Looking for a specific paper or subject?


Recent Posts

  • CLLMs: Consistency Large Language Models
    In this post we dive into Consistency Large Language Models, or CLLMs in short, which were introduced in a recent research paper that goes by the same name. Before diving in, if you prefer a video format then check out the following video: Motivation Top LLMs such as GPT-4, LLaMA3 and more, are pushing the limits of AI to remarkable advancements. When we feed a LLM with a prompt, it only generates a single token at a time. In order to generate the second token in the response, another pass of the LLM is needed, now both with the prompt …

    CLLMs: Consistency Large Language Models Read More »

  • ReFT: Representation Finetuning for Language Models
    In this post we dive into a recent research paper which presents a promising novel direction for fine-tuning LLMs, achieving remarkable results when considering both parameters count and performance. Before diving in, if you prefer a video format then check out the following video: Motivation – Finetuning a Pre-trained Transformer is Expensive A common method to solve a problem in AI these days is to leverage an existing large pre-trained transformer model, which was already trained on huge amount of data, and in order to make it work better for the specific task that we want to solve, we usually …

    ReFT: Representation Finetuning for Language Models Read More »

  • Stealing Part of a Production Language Model
    Many of the top large language models today such as GPT-4, Claude 3 and Gemini are closed source, so a lot about the inner workings of these models is not known to the public. One justification for this is usually the competitive landscape, since companies are investing a lot of money and effort to create these models, and another justification is security, since it is easier to attack models when more information is available. In this post we study a recent research paper with authors from Google DeepMind, titled: “Stealing Part of a Production Language Model”, which presents a model-stealing …

    Stealing Part of a Production Language Model Read More »

  • How Meta AI ‘s Human-Like V-JEPA Works?
    In this post, we dive into V-JEPA, which stands for Video Joint-Embedding Predicting Architecture, a new collection of vision models by Meta AI. V-JEPA is another step in Meta AI’s implementation of Yann LeCun’s vision about a more human-like AI. Several months back, we’ve already covered Meta AI’s I-JEPA model, which is a JEPA model for images, and now we focus on V-JEPA, which is the JEPA model for videos, and as we’ll see in this post, there are many similarities between the two. If you’re new to the JEPA models, then don’t worry, no prior JEPA knowledge is needed …

    How Meta AI ‘s Human-Like V-JEPA Works? Read More »


Top Posts

  • Code Llama repository-level reasoning

    Code Llama Paper Explained

    Code Llama is a new family of open-source large language models for code by Meta AI that includes three type of models. Each type was released with 7B, 13B and 34B params. In this post we’ll explain the research paper behind them, titled “Code Llama: Open Foundation Models for Code”, to understand how these models…

  • DINOv2 as foundational model

    DINOv2 from Meta AI – Finally a Foundational Model in Computer Vision

    DINOv2 is a computer vision model from Meta AI that claims to finally provide a foundational model in computer vision, closing some of the gap from natural language processing where it is already common for a while now. In this post, we’ll explain what does it mean to be a foundational model in computer vision…

  • I-JEPA example

    I-JEPA – A Human-Like Computer Vision Model

    I-JEPA, Image-based Joint-Embedding Predictive Architecture, is an open-source computer vision model from Meta AI, and the first AI model based on Yann LeCun’s vision for a more human-like AI, which he presented last year in a 62 pages paper titled “A Path Towards Autonomous Machine Intelligence”.In this post we’ll dive into the research paper that…

  • YOLO-NAS

    What is YOLO-NAS and How it Was Created

    In this post we dive into YOLO-NAS, an improved version in the YOLO models family for object detection which was precented earlier this year by Deci. YOLO models have been around for a while now, presented in 2015 with the paper You Only Look Once, which is what the shortcut YOLO stands for, and over…

https://www.traditionrolex.com/48
Scroll to Top